How do you convert # -7-7sqrt3i# to polar form?
1 Answer
Sep 13, 2017
Explanation:
#"to convert from "color(blue)"cartesian to polar form"#
#"that is "x+yito(x,y)to(r,theta)" using"#
#•color(white)(x)r=sqrt(x^2+y^2)#
#•color(white)(x)theta=tan^-1(y/x)#
#"here "x=-7" and "y=-7sqrt3#
#rArrr=sqrt((-7)^2+(-7sqrt3)^2)#
#color(white)(rArrr)=sqrt(49+147)=sqrt196=14#
#"since "-7-7sqrt3i" is in the third quadrant we must"#
#"ensure that "theta" is in the third quadrant"#
#theta=tan^-1(sqrt3)=pi/3larrcolor(blue)"related acute angle"#
#rArrtheta=(pi+pi/3)=(4pi)/3larrcolor(blue)" in third quadrant"#
#rArr(-7,-7sqrt3)to(14,(4pi)/3)#