How do you convert 8=(2x+4y)^2-5y+x into polar form?

1 Answer

r=(5 sin theta-cos theta+-sqrt(537 sin^2 theta+ 129 cos^2 theta+ 502*sin theta cos theta))/(8*cos^2 theta+32 sin^2 theta+ 32 sin theta cos theta)

Explanation:

My apologies for the length of the solution. I just wish to provide a quick answer.

From 8=(2x+4y)^2-5y+x

Use the transformation equivalent x=r cos theta and y=r sin theta

Use them in the equation, so that 8=(2x+4y)^2-5y+x
becomes
8=4(r cos theta+2(r sin theta))^2-5(r sin theta)+r cos theta
simplify so that it becomes

(4 cos^2 theta+16 sin^2 theta +16 sin theta cos theta)*r^2+(cos theta-5 sin theta)*r-8=0

Using Quadratic Equation formula for r

r=(-b+-sqrt(b^2-4*a*c))/(2a)

Use a=4 cos^2 theta+16 sin^2 theta +16 sin theta cos theta
Use b=cos theta-5 sin theta
Use c=-8

So that

r=(-(cos theta-5 sin theta)+-sqrt((cos theta-5 sin theta)^2-4*(4 cos^2 theta+16 sin^2 theta +16 sin theta cos theta)*(-8)))/(2(4 cos^2 theta+16 sin^2 theta +16 sin theta cos theta))

r==(5 sin theta-cos theta+-sqrt(537 sin^2 theta+ 129 cos^2 theta+ 502*sin theta cos theta))/(8*cos^2 theta+32 sin^2 theta+ 32 sin theta cos theta)

have a nice day!