How do you convert 8=(6x-4y)^2+2y-x into polar form?

1 Answer
Jan 1, 2018

r^2(10cos2theta-24sin2theta+6)+r(2sintheta-costheta)-8=0

Explanation:

The relation between polar coordinates (r,theta) and Cartesian coordinates (x,y) is x=rcostheta, y=rsintheta and x^2+y^2=r^2.

Hence 8=(6x-4y)^2+2y-x can be written as

8=36x^2+16y^2-48xy+2y-x

or 8=36r^2cos^2theta+16r^2sin^2theta-48r^2sinthetacostheta+2rsintheta-rcostheta

or 8=20r^2cos^2theta+16r^2-24r^2sin2theta+2rsintheta-rcostheta

or r^2(20cos^2theta-24sin2theta+16)+r(2sintheta-costheta)-8=0

or r^2(10(cos2theta-1)-24sin2theta+16)+r(2sintheta-costheta)-8=0

or r^2(10cos2theta-24sin2theta+6)+r(2sintheta-costheta)-8=0