How do you convert 9=(2x+2y)^2+7y-4x9=(2x+2y)2+7y4x into polar form?

1 Answer
Mar 16, 2018

4r^2(1+sin2theta)+r(7sintheta-4costheta)-9=04r2(1+sin2θ)+r(7sinθ4cosθ)9=0

Explanation:

The relation between Cartesian or rectangular coordinates (x,y)(x,y) and polar coordinates (r,theta)(r,θ) is given by

x=rcosthetax=rcosθ and y=rsinthetay=rsinθ. Therefore x^2+y^2=r^2x2+y2=r2 and

9=(2x+2y)^2+7y-4x9=(2x+2y)2+7y4x can be written as

9=4x^2+4y^2+8xy+7y-4x9=4x2+4y2+8xy+7y4x

or 9=4r^2+8r^2sinthetacostheta+7rsintheta-4rcostheta9=4r2+8r2sinθcosθ+7rsinθ4rcosθ

or 4r^2(1+2sinthetacostheta)+r(7sintheta-4costheta)-9=04r2(1+2sinθcosθ)+r(7sinθ4cosθ)9=0

or 4r^2(1+sin2theta)+r(7sintheta-4costheta)-9=04r2(1+sin2θ)+r(7sinθ4cosθ)9=0

graph{9=(2x+2y)^2+7y-4x [-4.083, 5.917, -3.6, 1.4]}