How do you convert 9=(x-3)^2+(2y-9)^2 into polar form?

1 Answer
May 3, 2018

The conversion from Rectangular to Polar:
x=rcostheta
y=rsintheta

Substitute for x and y:
9=(rcostheta-3)^2+(2rsintheta-9)^2

r^2cos^2theta-6rcostheta+9+4r^2sin^2theta-36sin^2theta+81=9

r^2cos^2theta-6rcostheta+4r^2sin^2theta-36rsintheta=-81

r(rcos^2theta-6costheta+4rsin^2theta-36sintheta)=-81

r=-81

Or the more meaningful solution:

rcos^2theta-6costheta+4rsin^2theta-36sintheta=-81

rcos^2theta+4rsin^2theta=-81+6costheta+36sintheta

r(cos^2theta+4sin^2theta)=-81+6costheta+36sintheta

r=(-81+6costheta+36sintheta)/(cos^2theta+4sin^2theta)