How do you convert 9=(x+3)^2+(y+8)^29=(x+3)2+(y+8)2 into polar form?

1 Answer
May 22, 2016

9=(x+3)^2+(y+8)^29=(x+3)2+(y+8)2 in polar form can be written as

r^2+2r(3costheta+8sintheta)+64=0r2+2r(3cosθ+8sinθ)+64=0

Explanation:

A Cartesian point (x,y)(x,y) in polar form is (r,theta)(r,θ), where

x=rcosthetax=rcosθ and y=rsinthetay=rsinθ and hence

x^2+y^2=r^2cos^2theta+r^2sin^2theta=r^2x2+y2=r2cos2θ+r2sin2θ=r2

Hence 9=(x+3)^2+(y+8)^29=(x+3)2+(y+8)2 can be written as

(rcostheta+3)^2+(rsintheta+8)^2=9(rcosθ+3)2+(rsinθ+8)2=9

or r^2cos^2theta+6rcostheta+9+r^2sin^2theta+16rsintheta+64=9r2cos2θ+6rcosθ+9+r2sin2θ+16rsinθ+64=9

or r^2+r(6costheta+16sintheta)+64=0r2+r(6cosθ+16sinθ)+64=0

or r^2+2r(3costheta+8sintheta)+64=0r2+2r(3cosθ+8sinθ)+64=0