How do you convert 9i to polar form?

1 Answer
Apr 11, 2018

color(blue)(9[cos(pi/2)+isin(pi/2)]

Explanation:

For complex numbers given in the form:

a+bi

The polar form will be:

z=r[cos(theta)+isin(theta)]

Where:

r=sqrt(a^2+b^2)

theta=arctan(b/a)

0+9i

r=sqrt((0)^2+(9)^2)=9

theta=arctan(9/0)

This is undefined, which tells us that theta is either pi/2 or (5pi)/2.

9i is positive, so this must be in the I and II quadrants. theta is therefore pi/2

Plugging these values into:

z=r[cos(theta)+isin(theta)]

z=color(blue)(9[cos(pi/2)+isin(pi/2)]