How do you convert (r+1)^2= - sin theta costheta to Cartesian form?

1 Answer
May 25, 2017

(x^2+y^2)^2+2(x^2+y^2)^(3/2)+x^2+y^2+xy=0

Explanation:

The relation between polar coordinates (r,theta) and Cartesian coordinates (x,y) is given by

x=rcostheta, y=rsintheta and x^2+y^2=r^2

Hence we can write (r+1)^2=-sinthetacostheta in Cartesian form as

x^2+y^2+2sqrt(x^2+y^2)+1=-y/rxx x/r

or x^2+y^2+2sqrt(x^2+y^2)+1=-(xy)/(x^2+y^2)

or (x^2+y^2)^2+2(x^2+y^2)^(3/2)+x^2+y^2+xy=0