How do you convert (r+1)^2= theta + sectheta to Cartesian form?

1 Answer
Jun 29, 2016

x/y=tan[x^2+y^2+sqrt(x^2+y^2)(2-1/x)+1]

Explanation:

When we convert polar coordinates (r,theta) to Cartesian coordinates, the relation is x=rcostheta, y=rsintheta and hence r^2=x^2+y^2 and theta=tan^(-1)(x/y).

Hence (r+1)^2=theta+sectheta can be written as

r^2+2r+1=theta+sectheta or

x^2+y^2+2sqrt(x^2+y^2)+1=tan(-1)(x/y)+sqrt(x^2+y^2)/x or

x^2+y^2+sqrt(x^2+y^2)(2-1/x)+1=tan(-1)(x/y) or

x/y=tan[x^2+y^2+sqrt(x^2+y^2)(2-1/x)+1]