How do you convert r = 2 / (1+sin(theta)) into rectangular form?

1 Answer
Apr 14, 2018

The rectangular equation is y=-x^2/4+1.

Explanation:

r=2/(1+sintheta)

r=2/(1+sintheta)color(red)(*(1-sintheta)/(1-sintheta))

r=(2-2sintheta)/(1-sin^2theta)

r=(2-2sintheta)/cos^2theta

r^2=(2r-2rsintheta)/cos^2theta

r^2cos^2theta=2r-2rsintheta

(rcostheta)^2=2r-2rsintheta

Using the substitutions y=rsintheta and x=rcostheta and r=sqrt(x^2+y^2):

x^2=2sqrt(x^2+y^2)-2y

x^2/2+y=sqrt(x^2+y^2)

x^4/4+yx^2+y^2=x^2+y^2

x^4/4+yx^2=x^2

x^2(x^2/4+y)=x^2

x^2/4+y=1

y=-x^2/4+1

That's the equation; it's a parabola. Here's what it looks like:

graph{-x^2/4+1 [-10, 10, -5, 5]}