How do you convert r = 2-2cos(theta) into rectangular form?

1 Answer
Jun 25, 2016

(x^2+y^2)^2+4x(x^2+y^2)-4y^2=0.

Explanation:

The conversion formula reqd. are x=rcostheta, y=rsintheta, r=sqrt(x^2+y^2).

Putting costheta=x/r in the given eqn., we get, r=2-2x/r, or, r^2=2r-2x, i.e., x^2+y^2=2sqrt(x^2+y^2)-2x rArr {(x^2+y^2)+2x)^2=4(x^2+y^2).

:. (x^2+y^2)^2+4x(x^2+y^2)+4x^2-4x^2-4y^2=0.

:. (x^2+y^2)^2+4x(x^2+y^2)-4y^2=0.