How do you convert r=-2 theta - tan theta to Cartesian form?

1 Answer
Feb 18, 2018

sqrt(x^2+y^2)=-(y/x+2tan^-1(y/x))

Explanation:

"Given,"r=-2theta-tantheta

x=rcostheta, y=rsintheta

tantheta=y/x

r=sqrt(x^2+y^2), theta=tan^-1(y/x)

Thus,

r=-2theta-tantheta " becomes, "
sqrt(x^2+y^2)=-2tan^-1(y/x)-y/x

Rearranging

sqrt(x^2+y^2)=-(y/x+2tan^-1(y/x))