How do you convert r=2sin theta + cos thetar=2sinθ+cosθ into rectangular form?

1 Answer
Feb 25, 2017

The equation is (x-1/2)^2+(y-1)^2=5/4(x12)2+(y1)2=54

Explanation:

To convert from polar coordinates (r, theta)(r,θ) to rectangular coordinates (x,y)(x,y), we use the following equations

x=rcosthetax=rcosθ, =>, costheta=x/rcosθ=xr

y=rsinthetay=rsinθ, =>, sintheta=y/rsinθ=yr

x^2+y^2=r^2x2+y2=r2

Therefore,

r=2sintheta+costhetar=2sinθ+cosθ

r=2*y/r+x/rr=2yr+xr

r^2=2y+xr2=2y+x

x^2+y^2=2y+xx2+y2=2y+x

x^2-x+y^2-2y=0x2x+y22y=0

x^2-x+1/4+y^2-2y+1=1+1/4x2x+14+y22y+1=1+14

(x-1/2)^2+(y-1)^2=5/4(x12)2+(y1)2=54

This is the equation of a circle, center (1/2,1)(12,1) and radius =sqrt5/2=52