How do you convert r=3theta - csctheta to Cartesian form?

1 Answer
Mar 14, 2016

sqrt(x^2+y^2)=3arctan(y/x)-sqrt(x^2+y^2)/y

Explanation:

(r,theta) in polar coordinates is (rcostheta,rsintheta) in rectangular coordinates and

(x,y) in rectangular coordinates is (sqrt(x^2+y^2),arctan(y/x)) in polar coordinates.

Note that sintheta=y/r=y/(sqrt(x^2+y^2)

Hence r=3theta-csctheta can be written as

sqrt(x^2+y^2)=3arctan(y/x)-sqrt(x^2+y^2)/y