How do you convert sqrt(3)i - 1 to polar form?

1 Answer
May 23, 2016

(2,(2pi)/3)

Explanation:

Using the formulae that links Cartesian to Polar coordinates.

•r=sqrt(x^2+y^2)" and " theta=tan^-1(y/x)

now sqrt3 i-1=-1+sqrt3 i

here x = -1 and y =sqrt3

rArrr=sqrt((-1)^2+(sqrt3)^2)=sqrt4=2

and theta=tan^-1(-sqrt3)=-pi/3

-1+sqrt3 i" is in the 2nd quadrant"

so theta" requires to be an angle in 2nd quadrant"

rArrtheta=(pi-pi/3)=(2pi)/3

rArr(-1,sqrt3)=(2,(2pi)/3)