How do you convert sqrt(3)i - 1 to polar form?
1 Answer
May 23, 2016
Explanation:
Using the formulae that links Cartesian to Polar coordinates.
•r=sqrt(x^2+y^2)" and " theta=tan^-1(y/x) now
sqrt3 i-1=-1+sqrt3 i here x = -1 and y =
sqrt3
rArrr=sqrt((-1)^2+(sqrt3)^2)=sqrt4=2 and
theta=tan^-1(-sqrt3)=-pi/3
-1+sqrt3 i" is in the 2nd quadrant" so
theta" requires to be an angle in 2nd quadrant"
rArrtheta=(pi-pi/3)=(2pi)/3
rArr(-1,sqrt3)=(2,(2pi)/3)