How do you convert sqrt3 - sqrt3i33i to polar form?

1 Answer
Oct 22, 2016

The polar form is sqrt3(cos(-pi/4)+isin(-pi/4))3(cos(π4)+isin(π4))

Explanation:

Let z=sqrt3-isqrt3z=3i3

Then the modulus of z is ∣z∣=sqrt((sqrt3)^2+ (sqrt3)^2) =sqrt6z=(3)2+(3)2=6
Rewriting z

z=∣z∣(sqrt3-isqrt3)=sqrt6((sqrt3/sqrt6)-i(sqrt3/sqrt6))z=z(3i3)=6((36)i(36))

=sqrt6(1/sqrt2-i/sqrt2)=6(12i2)

Comparing this to the standard form z=r(costheta+isintheta)z=r(cosθ+isinθ)

We see that costheta=1/sqrt2cosθ=12

and sintheta=-1/sqrt2sinθ=12
This can occur in the 4th quadrant and theta =-pi/4θ=π4

And finally we have z=sqrt6(cos(-pi/4)+sin(-pi/4))z=6(cos(π4)+sin(π4))

You can also write the resultas z=sqrt6e^(-ipi/4)z=6eiπ4