How do you convert x^2+4x+y^2+4y=0 to polar form?

1 Answer
Oct 19, 2016

r+4sqrt2cos(theta-pi/4)=0

Explanation:

The relation between polar coordinates (r,theta) and rectangular Cartesian coordinates (x,y) are given by

x=rcostheta and y=rsintheta or r^2=x^2+y^2

Hence x^2+4x+y^2+4y=0 can be written as

x^2+y^2+4x+4y=0

or r^2+4rcostheta+4rsintheta=0

or r^2+4r(costheta+sintheta)=0

or r+4(costheta+sintheta)=0

or r+4sqrt2(costhetaxx1/sqrt2+sinthetaxx1/sqrt2)=0

or r+4sqrt2(costhetacos(pi/4)+sinthetasin(pi/4))=0

or r+4sqrt2cos(theta-pi/4)=0