How do you convert y= -2x^2+3xy-4 into a polar equation?

2 Answers
Oct 11, 2016

We know the relations

x=rcostheta and y =rsintheta

Again x^2+y^2=r^2

where r and theta are the polar coordinate of a point having rectangular coordinate (x,y)

The given equation in rectanglar form is

y=-2x^2+3xy-4

=>rsintheta=-2r^2cos^2theta+3r^2sinthetacostheta-4

=>rsintheta+2r^2cos^2theta-3r^2sinthetacostheta+4=0

This is the polar form of the given equation.

Oct 11, 2016

Substitute rcos(theta) for x and rsin(theta) for y:
r = (-sin(theta) +-sqrt(sin^2(theta) + 16(3cos(theta)sin(theta) - 2cos^2(theta))))/((6cos(theta)sin(theta) - 4cos^2(theta)))

Explanation:

Substitute rcos(theta) for x and rsin(theta) for y:

rsin(theta) = -2r^2cos^2(theta) + 3r^2cos(theta)sin(theta) - 4

r^2(3cos(theta)sin(theta) - 2cos^2(theta)) - rsin(theta) - 4

This a quadratic of the form ar^2 + br + c where a = (3cos(theta)sin(theta) - 2cos^2(theta)), b = -sin(theta), and c = -4

Using the quadratic formula, r = (-b +-sqrt(b^2 - 4(a)(c)))/(2a):

r = (-sin(theta) +-sqrt(sin^2(theta) + 16(3cos(theta)sin(theta) - 2cos^2(theta))))/((6cos(theta)sin(theta) - 4cos^2(theta)))