How do you convert y= 3x^2+3x-2y^2 y=3x2+3x2y2 into a polar equation?

1 Answer
May 19, 2016

Polar equation is r=(sintheta-3costheta)/(cos^2theta+2cos2theta)r=sinθ3cosθcos2θ+2cos2θ

Explanation:

The relation between polar coordinates (r,theta)(r,θ) and Cartesian coordinates (x,y)(x,y) is given by

x=rcosthetax=rcosθ, y=rsinthetay=rsinθ, r^2=x^2+y^2r2=x2+y2.

Using them we can convert y=3x^2+3x-2y^2y=3x2+3x2y2 as follows.

y=3x^2+3x-2y^2y=3x2+3x2y2

or rsintheta=3(rcostheta)^2+3rcostheta-2(rsintheta)^2rsinθ=3(rcosθ)2+3rcosθ2(rsinθ)2

or rsintheta=3r^2cos^2theta+3rcostheta-2r^2sin^2thetarsinθ=3r2cos2θ+3rcosθ2r2sin2θ

or rsintheta=r^2cos^2theta+3rcostheta+2r^2(cos^2theta-sin^2theta)rsinθ=r2cos2θ+3rcosθ+2r2(cos2θsin2θ)

or sintheta=rcos^2theta+3costheta+2rcos2thetasinθ=rcos2θ+3cosθ+2rcos2θ

or r=(sintheta-3costheta)/(cos^2theta+2cos2theta)r=sinθ3cosθcos2θ+2cos2θ