The relation between polar coordinates (r,theta)(r,θ) and Cartesian coordinates (x,y)(x,y) is given by
x=rcosthetax=rcosθ, y=rsinthetay=rsinθ, r^2=x^2+y^2r2=x2+y2.
Using them we can convert y=3x^2+3x-2y^2y=3x2+3x−2y2 as follows.
y=3x^2+3x-2y^2y=3x2+3x−2y2
or rsintheta=3(rcostheta)^2+3rcostheta-2(rsintheta)^2rsinθ=3(rcosθ)2+3rcosθ−2(rsinθ)2
or rsintheta=3r^2cos^2theta+3rcostheta-2r^2sin^2thetarsinθ=3r2cos2θ+3rcosθ−2r2sin2θ
or rsintheta=r^2cos^2theta+3rcostheta+2r^2(cos^2theta-sin^2theta)rsinθ=r2cos2θ+3rcosθ+2r2(cos2θ−sin2θ)
or sintheta=rcos^2theta+3costheta+2rcos2thetasinθ=rcos2θ+3cosθ+2rcos2θ
or r=(sintheta-3costheta)/(cos^2theta+2cos2theta)r=sinθ−3cosθcos2θ+2cos2θ