How do you convert z= i -1/cos (pi/3) + isin(pi/3) in polar form?

1 Answer
Jun 4, 2017

Given: z= i -1/cos (pi/3) + isin(pi/3)

We know that -1/cos(pi/3) = -2

z= -2+ i + isin(pi/3)

We know that sin(pi/3) = sqrt3/2

z= -2 + i(1 + sqrt3/2)

r = sqrt((-2)^2 + (1 + sqrt3/2)^2)

r ~~ 2.7

The angle is in the second quadrant:

theta = pi + tan^-1(-1/2-sqrt3/4)

theta ~~ 2.39

z = 2.7e^(i2.39)