How do you determine p(c) given p(x)=x^3+2x^2+3x+4p(x)=x3+2x2+3x+4 and c=-1?

1 Answer
Sep 8, 2016

22

Explanation:

We have: p(x) = x^(3) + 2 x^(2) + 3 x + 4p(x)=x3+2x2+3x+4; c = - 1c=1

First, let's substitute xx with cc:

=> p(c) = (c)^(3) + 2 (c)^(2) + 3 (c) + 4p(c)=(c)3+2(c)2+3(c)+4

Then, the value of cc is given as - 11.

Let's substitute cc with - 11:

=> p(- 1) = (- 1)^(3) + 2 (- 1)^(2) + 3 (- 1) + 4p(1)=(1)3+2(1)2+3(1)+4

=> p(- 1) = - 1 + 2 - 3 + 4p(1)=1+23+4

=> p(- 1) = 1 + 1p(1)=1+1

=> p(- 1) = 2p(1)=2