How do you differentiate (2x+1)(x-tanx)?

1 Answer
Jun 15, 2016

d/(dx)(2x+1)(x-tanx)

= 4x+1-2xsec^2x-sec^2x-2tanx

Explanation:

If f(x)=g(x)xxh(x), (df)/(dx)=g(x)xx(dh)/(dx)+(dg)/(dx)xxh(x)

Hence d/(dx)(2x+1)(x-tanx)

= (2x+1)(1-sec^2x)+2(x-tanx)

= 2x+1-2xsec^2x-sec^2x+2x-2tanx

= 4x+1-2xsec^2x-sec^2x-2tanx