Set y=color(blue)((3x+4))color(green)((2x-5))
multiply everything in the right bracket by everything in the left
y=color(green)(color(blue)(3x)(2x-5)color(blue)(+4)(2x-5))
y=6x^2-7x-25
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Shortcut method:")
The general case: given that y=ax^n then dy/dx=anx^(n-1)
Note that the differential of any constant is 0
differentiation each term in turn
dy/dx=d/dx(6x^2)+d/dx(-7x)+d/dx(-25)
dy/dx=12x-7+0
Or the current trend is that you write it like:
color(green)(f'(x) = 12x-7)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("First principle method (the hard way)")
Let x grow the very small amount of deltax
As a consequence y will change a small amount deltay
So y=6x^2-7x-25" "..........................Equation(1)
becomes
y+deltay=6(x+deltax)^2-7(x+deltax)-25
y+deltay=6(x^2+2xdeltax+(deltax)^2)-7x-7deltax-25
y+deltay=6x^2+12xdeltax+6(deltax)^2-7x-7deltax-25.Equation(2)
Equation(2)-Equation(1)
y+deltay=6x^2+12xdeltax+6(deltax)^2-7x-7deltax-25
ul(y" "=6x^2" "-7x" "-25)
" "deltay=0color(white)(x^2)+12xdeltax+6(deltax)^2+0color(white)(x)-7deltax+0
Divide both sides by deltax
(deltay)/(deltax)= 12x-7+6deltax
Now consider deltax as becoming increasingly small so that it is almost but not quite 0. The this equation becomes
lim_(deltax->0) (deltay)/(deltax)=lim_(deltax->0)(12x-7+6deltax)
color(green)(dy/dx=12x-7+0) as above in the shortcut method