How do you differentiate root3(x)+root4(x)3x+4x?

1 Answer
Aug 8, 2016

=1/(3x^(2/3))+1/(4x^(3/4))=13x23+14x34.

Explanation:

We know that, d/dx(x^n)=n*x^(n-1)ddx(xn)=nxn1, and,

d/dx(u+v)=(du)/dx+(dv)/dxddx(u+v)=dudx+dvdx

Therefore, d/dx(root3x+root4x)=d/dxroot3x+d/dxroot4xddx(3x+4x)=ddx3x+ddx4x

=d/dxx^(1/3)+d/dxx^(1/4)=ddxx13+ddxx14

=1/3*x^(1/3-1)+1/4*x^(1/4-1)=13x131+14x141

=1/(3x^(2/3))+1/(4x^(3/4))=13x23+14x34.