Let u=(x-1) -> (du)/dx=1
Let v=(x^2+2)^3->(du)/dx=3(x^2+2)^2(2x) =6x(x^2+2)^2
Set y=(x-1)(x^2+2)^3 ->uv
Using dy/dx=v(du)/dx+u(dv)/dx
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
dy/dx" "=" "[(x^2+2)^3xx1] + (x-1)[6x(x^2+2)^2] ......Eqn(1)
=>dy/dx" "=" "(x^2+2)^2[(x^2+2)+6x(x-1)]
=>dy/dx" "=" "(x^2+2)^2(7x^2-6x+2)
=>dy/dx" "=" "(x^4+4x^2+4)(7x^2-6x+2)
dy/dx=color(blue)(7x^6 -6x^5+2x^4)color(green)(+28x^4-24x^3+8x^2)color(purple)(+28x^2-24x+8)
dy/dx=7x^6-6x^5+30x^4-24x^3+ 36x^2-24x+8
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check: