How do you differentiate (x^2+4)sqrt(x-3)?

1 Answer
Feb 5, 2015

The answer is: y'=((5x-2)(x-2))/(2sqrt(x-3)).

The rule of the derivative of a product is:

y=f(x)*g(x)rArry'=f'(x)*g(x)+f(x)*g'(x);

so:

y'=2xsqrt(x-3)+(x^2+4)*1/(2sqrt(x-3))=

=(2xsqrt(x-3)*2sqrt(x-3)+x^2+4)/(2sqrt(x-3))=(4x(x-3)+x^2+4)/(2sqrt(x-3))=

=(5x^2-12x+4)/(2sqrt(x-3))

We can factor 5x^2-12x+4 remembering that if we consider that polynomial like a square equation, we can find the two solutions x_1andx_2, than:

ax^2+bx+c=a(x-x_1)(x-x_2);

so, we can use the reduced formula because b is even:

5x^2-12x+4=0rArr Delta/4=(b/2)^2-ac=36-20=16 and

x_(1,2)=(-b/2+-sqrt(Delta/4))/a=(6+-4)/5rArr

x_1=2/5andx_2=2.

So:

5x^2-12x+4=5(x-2/5)(x-2)=(5x-2)(x-2).

Finally:

y'=((5x-2)(x-2))/(2sqrt(x-3)).