How do you differentiate x^2sqrt(x^4+1)?

1 Answer
Mar 5, 2017

=(4x^5+2x)/(sqrt(x^4+1))

Explanation:

Since

f(x)=g(x)*h(x)->f'(x)=g'(x)*h(x)+g(x)*h'(x)
and
f(x)=sqrt(g(x))->f'(x)=1/(2sqrt(g(x)))*g'(x),

then

y=x^2sqrt(x^4+1)->y'=2x*sqrt(x^4+1)+x^2*1/(cancel2sqrt(x^4+1))*cancel4^2x^3

=2x*sqrt(x^4+1)+(2x^5)/(sqrt(x^4+1))

=(2x*(x^4+1)+2x^5)/(sqrt(x^4+1))

=(4x^5+2x)/(sqrt(x^4+1))