d/dx{x^(sqrt5)+sqrt(5x)},ddx{x√5+√5x},
=d/dx{x^sqrt5}+d/dx{sqrt5*x^(1/2)},=ddx{x√5}+ddx{√5⋅x12},
=sqrt5*x^(sqrt5-1)+sqrt5*d/dx{x^(1/2)},=√5⋅x√5−1+√5⋅ddx{x12},
=sqrt5*x^(sqrt5-1)+sqrt5{1/2x^((1/2)-1)},=√5⋅x√5−1+√5{12x(12)−1},
=sqrt5*x^(sqrt5-1)+sqrt5{1/2x^(-1/2)}.=√5⋅x√5−1+√5{12x−12}.
rArr dy/dx=sqrt5*x^(sqrt5-1)+sqrt5/(2sqrtx).⇒dydx=√5⋅x√5−1+√52√x.