How do you differentiate x^sqrt5+sqrt(5x)x5+5x?

1 Answer
Nov 25, 2017

dy/dx=sqrt5*x^(sqrt5-1)+sqrt5/(2sqrtx).dydx=5x51+52x.

Explanation:

d/dx{x^(sqrt5)+sqrt(5x)},ddx{x5+5x},

=d/dx{x^sqrt5}+d/dx{sqrt5*x^(1/2)},=ddx{x5}+ddx{5x12},

=sqrt5*x^(sqrt5-1)+sqrt5*d/dx{x^(1/2)},=5x51+5ddx{x12},

=sqrt5*x^(sqrt5-1)+sqrt5{1/2x^((1/2)-1)},=5x51+5{12x(12)1},

=sqrt5*x^(sqrt5-1)+sqrt5{1/2x^(-1/2)}.=5x51+5{12x12}.

rArr dy/dx=sqrt5*x^(sqrt5-1)+sqrt5/(2sqrtx).dydx=5x51+52x.