How do you differentiate y= (8/x^3)((x + x^7)/5)y=(8x3)(x+x75)?

1 Answer
Jun 22, 2016

(dy)/(dx)=-16/(5x^3)+32/5x^3dydx=165x3+325x3

Explanation:

The function y=(8/x^3)((x+x^7)/5)y=(8x3)(x+x75)

= 8/5xx((x+x^7)/x^3)85×(x+x7x3)

= 8/5xx(x/x^3+x^7/x^3)85×(xx3+x7x3)

= 8/5xx(1/x^2+x^4)85×(1x2+x4)

Hence (dy)/(dx)=8/5xx((-2)/x^3+4x^3)dydx=85×(2x3+4x3)

or (dy)/(dx)=-16/(5x^3)+32/5x^3dydx=165x3+325x3