How do you differentiate y=e^(x+1)+1y=ex+1+1?

1 Answer
Jul 10, 2017

Given: y=e^(x+1)+1y=ex+1+1

Differentiate each term:

dy/dx = (d(e^(x+1)))/dx + (d(1))/dxdydx=d(ex+1)dx+d(1)dx

The derivative of a constant is 0:

dy/dx = (d(e^(x+1)))/dx + 0dydx=d(ex+1)dx+0

dy/dx = (d(e^(x+1)))/dxdydx=d(ex+1)dx

We digress to use the chain rule:

Let u = x+1u=x+1, then (du)/dx = 1dudx=1

(d(e^(x+1)))/dx = (d(e^u))/dx(du)/dxd(ex+1)dx=d(eu)dxdudx

(d(e^(x+1)))/dx = (e^u)(1)d(ex+1)dx=(eu)(1)

Reverse the substitution:

(d(e^(x+1)))/dx = e^(x+1)d(ex+1)dx=ex+1

Returning from the digression:

dy/dx = e^(x+1)dydx=ex+1