How do you differentiate #y=x^-2cosx-4x^-3#?

1 Answer
Oct 24, 2017

#dy/dx = -2x^-3cosx - x^-2sinx + 12x^-4#

#= (-2cosx)/x^3 - sinx/x^2 + 12/x^4#

#= (12-2xcosx - x^2sinx)/x^4#

Explanation:

You should know a couple of rules for differentiation:

Power rule:

if #f(x) = ax^n#
then #f'(x) = n*ax^(n-1)#

Product rule:

if #f(x) = g(x)h(x)#
then #f'(x) = g'(x)h(x) + g(x)h'(x)#

And finally, summing derivatives:

#d/dx(a + b) = (da)/dx + (db)/dx#

Now we have the knowledge base to tackle the problem. We'll split it up.

#d/dx x^-2 = -2x^-3#

#d/dx cosx = -sinx#

so

#d/dx (x^-2cosx) = -2x^-3cosx-x^-2sinx#

and also

#d/dx (-4x^-3) = + 12x^-4#

so, in all, we have

#d/dx(x^-2cosx - 4x^-3) = #

#-2x^-3cosx-x^-2sinx+12x^-4#