How do you differentiate y = (x + 7)^10 (x^2 + 2)^7?

1 Answer
Jul 6, 2015

y'=(10(x^2+2)+14x(x+7))(x+7)^9(x^2+2)^6

= (24x^2+98x +20)(x+7)^9(x^2+2)^6

Explanation:

y=(x+7)^10(x^2+2)^7 is of the form:

y=U(x)V(x)

An equation of this form is differentaited like this:

y'=U'(x)V(x)+U(x)V'(x)

U(x) and V(x) are both of the form:

U(x)=g(f(x))

An equation of this form is differentiated like this:

U'(x)=f'(x)g'(f(x))

rarr U'(x)=(d(x+7))/(dx)(d((x+7)^10))/(d(x+7))=1*10(x+7)^9
=10(x+7)^9

rarr V'(x)=(d(x^2+2))/(dx)(d((x^2+2)^7))/(d(x^2+2))=2x*7(x^2+2)^6
=14x(x^2+2)^6

Therefore:

y'=10(x+7)^9(x^2+2)^7+14x(x+7)^10(x^2+2)^6

=(10(x^2+2)+14x(x+7))(x+7)^9(x^2+2)^6
= (24x^2+98x +20)(x+7)^9(x^2+2)^6