How do you differentiate z=A/y^10+Be^yz=Ay10+Bey?

1 Answer
Nov 25, 2016

dz/dy=-A/(10n^11)+Be^ydzdy=A10n11+Bey

Explanation:

Assuming zz is a function and AA and BB are constants, we see that:

dz/dy=d/dy(A/y^10)+d/dy(Be^y)dzdy=ddy(Ay10)+ddy(Bey)

Pulling out the constants:

dz/dy=Ad/dy(y^-10)+Bd/dy(e^y)dzdy=Addy(y10)+Bddy(ey)

Now using d/dy(y^n)=ny^(n-1)ddy(yn)=nyn1 and d/dy(e^y)=e^yddy(ey)=ey, we see that:

dz/dy=A(-10n^(-10-1))+B(e^y)dzdy=A(10n101)+B(ey)

dz/dy=-(10A)/(n^11)+Be^ydzdy=10An11+Bey