How do you divide (1-2i) / (6+i) in trigonometric form?

1 Answer
Jan 30, 2018

In trigonometric form: 0.368(cos 5.011+isin 5.011)

Explanation:

Z=(1-2i)/(6+i)

Z=a+ib . Modulus: |Z|=sqrt (a^2+b^2);

Argument:theta=tan^-1(b/a) Trigonometrical form :

Z =|Z|(costheta+isintheta)

Z_1= 1-2 i .Modulus:|Z|=sqrt(1^2+(-2)^2)

=sqrt 5 ~~ 2.236 Argument: tan alpha= (|-2|)/(|1|)

=2 . alpha =tan^-1 2 = 1.107; Z_1 lies on fourth quadrant, so

theta =2pi-alpha=2pi-1.107 ~~ 5.176

:. Z_1=2.236(cos5.176+isin 5.176) ,

Z_2= 6 + i .Modulus:|Z|=sqrt(6^2+1^2)

=sqrt 37 ~~ 6.083 Argument: tan alpha= (|1|)/(|6|)

=1/6 :.alpha =tan^-1 (1/6) = 0.165 ; Z_2 lies on first quadrant,

:. theta=alpha ~~0.165 :. Z_2=6.083(cos 0.165+isin 0.165)

Z=(1-2i)/(6+i)

Z= (2.236(cos5.176+isin 5.176))/(6.083(cos 0.165+isin 0.165)

Z=0.368(cos(5.176-0.165)+isin (5.176-0.165)) or

Z=0.368(cos 5.011+isin 5.011) =4/37-13/37i

In trigonometric form: 0.368(cos 5.011+isin 5.011) [Ans]