How do you divide ( 12i -3) / ( 7 i -2 ) in trigonometric form?

1 Answer
Mar 11, 2018

color(red)(90/53-(3i)/53 = (3/53)sqrt(901){cos(-a tan(1/30)+2pi}+i sin{-a tan(1/30)+2pi}

Explanation:

Given:

Divide the complex numbers in trigonometric form:

color(blue)((12i-3)/(7i-2)

Rewrite in color(green)(z=(a+bi) form:

color(blue)((-3+12i)/(-2+7i)

Multiply and divide by the complex conjugate of the denominator

rArr (-3+12i)/(-2+7i)*(-2-7i)/(-2-7i)

rArr {(-3+12i)(-2-7i)}/{(-2+7i)(-2-7i)

rArr {(-3+12i)(-2-7i)}/{(-2)^2-(7i)^2)

Note that i = sqrt(-1) and i^2 = (-1) in complex number arithmetic.

rArr (6+21i-24i-84i^2)/(4-(49i^2)

rArr (90-3i)/(4-49*(-1))

rArr (90-3i)/(4+49)

rArr (90-3i)/53

rArr 90/53 -3/53i

Next, we will find the Polar form

Important:

For any complex number color(blue)(a+bi,

Polar form is given by

color(blue)(r[cos(theta)+i sin(theta)], where

color(brown)(r = sqrt(a^2+b^2), and

color(brown)(theta = tan^(-1)(b/a)

We have, for a+bi

a=(90/53) and b = (-3/53)

r=sqrt((90/53)^2+(-3/53)^2)

r=sqrt(8100/2809+9/2809)

r=sqrt(8109/2809)

r=sqrt((8109)/(53*53))

r=sqrt((901*9)/(53*53))

r=sqrt(901/53*9/53)

color(brown)(r=(3sqrt(901))/53

Also,

theta = tan^-1[(-3/53)/(90/53)]

rArr theta = -tan^-1(1/30)

Add 2pi, since theta is negative.

color(brown)[:. theta = -tan^-1(1/30)+2pi

Hence, the final answer is given by

color(blue)(90/53-(3i)/53 = (3/53)sqrt(901){cos(-a tan(1/30)+2pi}+i sin{-a tan(1/30)+2pi}

Hope you find this solution useful.