How do you divide (2+8i)/(7+i) in trigonometric form?

1 Answer

1/25(11+27i)

Explanation:

We have

\frac{2+8i}{7+i}

=\frac{\sqrt{68}(\cos(\tan^{-1}(4))+i\sin(\tan^{-1}(4)))}{\sqrt{50}(\cos(\tan^{-1}(1/7))+i\sin(\tan^{-1}(1/7)))}

=\sqrt{\frac{68}{50}}(\cos(\tan^{-1}(4)-\tan^{-1}(1/7))+i\sin(\tan^{-1}(4)-\tan^{-1}(1/7)))

=\sqrt{\frac{34}{25}}(\cos(\tan^{-1}(27/11))+i\sin(\tan^{-1}(27/11)))

=\sqrt{\frac{34}{25}}(11/\sqrt850+i27/\sqrt{850})

=\sqrt{\frac{34}{25\times 850}}(11+27i)

=1/25(11+27i)