How do you divide ( 2i-1) / ( 3i +5 ) in trigonometric form?

1 Answer
May 21, 2016

(2i-1)/(3i+5)=sqrt(5/34)(cosrho+isinrho) where rho=tan^(-1)13

Explanation:

Let us first write (2i-1) and (3i+5) in trigonometric form.

a+ib can be written in trigonometric form re^(itheta)=rcostheta+irsintheta=r(costheta+isintheta),
where r=sqrt(a^2+b^2) and tantheta=b/a or theta=arctan(b/a)

Hence 2i-1=(-1+2i)=sqrt((-1)^2+2^2)[cosalpha+isinalpha] or

sqrt5e^(ialpha), where tanalpha=6/(-4)=2/(-1)=-2 and

3i+5=(5+3i)=sqrt(5^2+3^2)[cosbeta+isinbeta] or

sqrt34e^(ibeta], where tanbeta=3/5

Hence (2i-1)/(3i+5)=(sqrt5e^(ialpha))/(sqrt34e^(ibeta])=sqrt(5/34)e^(i(alpha-beta))=sqrt(5/34)(cos(alpha-beta)+isin(alpha-beta))

Now, tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)

= (-2-3/5)/(1+(-2)*(3/5)) = (-13/5)/(-1/5)=-13/5*(-5)/1=13

Hence (2i-1)/(3i+5)=sqrt(5/34)(cosrho+isinrho) where rho=tan^(-1)13