How do you divide ( 2i -3) / (- 6 i -8 )2i36i8 in trigonometric form?

1 Answer
Jul 26, 2018

color(crimson )(=> 0.12 - 0.34 i),0.120.34i, IV QUADRANT

Explanation:

z_1 / z_2 = (r_1 / r_2) (cos (theta_1 - theta_2) + i sin (theta_1 - theta_2))z1z2=(r1r2)(cos(θ1θ2)+isin(θ1θ2))

z_1 = -3 + 2 i, z_2 = -8 - 6 iz1=3+2i,z2=86i

r_1 = sqrt(-3^2 + 2^2)^2) = sqrt 13r1=32+222)=13

theta_1 = tan ^ -1 (2 / -3) = 146.3099^@ = , " II Quadrant"θ1=tan1(23)=146.3099=, II Quadrant

r_2 = sqrt(-8^2 + (-6)^2) = 10r2=82+(6)2=10

theta_2 = tan ^-1 (-6/ -8) ~~ 216.8699^@, " III Quadrant"θ2=tan1(68)216.8699, III Quadrant

z_1 / z_2 = (sqrt(13) /10) * (cos (146.3099 - 216.8699) + i sin (146.3099 - 216.8699))z1z2=(1310)(cos(146.3099216.8699)+isin(146.3099216.8699))

color(crimson )(=> 0.12 - 0.34 i),0.120.34i, IV QUADRANT