How do you divide ( 2i -4) / ( 5 i -6 ) in trigonometric form?

1 Answer
Feb 18, 2018

(2i-4)/(5i-6)=sqrt(5/61)"cis(tan^-1(-16/29))

Explanation:

"Let" z_1=2i-4, "where",
r_1=sqrt(2^2+(-1)^2)=sqrt5
theta1=tan^-1((-4)/2)

"Let" z_2=5i-6, "where",
r_1=sqrt(5^2+(-6)^2)=sqrt61
theta1=tan^-1((-6)/5)

"Now,"

z_1=sqrt5("cis"(tan^-1((-4)/2)))

z_2=sqrt61("cis"(tan^-1((-6)/5)))

(2i-4)/(5i-6)=z_1/z_2=(sqrt5("cis"(tan^-1((-4)/2))))/(sqrt61("cis"(tan^-1((-6)/5))))
=(sqrt5)/(sqrt61)("cis"(tan^-1((-4)/2)))/("cis"(tan^-1((-6)/5)))

(sqrt5)/(sqrt61)=sqrt(5/61)
"By De-Moivre's Theorem,"

("cis"(tan^-1((-4)/2)))/("cis"(tan^-1((-6)/5)))=cis(tan^-1((-4)/2)-tan^-1((-6)/5))

tan^-1((-4)/2)-tan^-1((-6)/5)=tan^-1(((-4)/2-(-6)/5)/(1+((-4)/2)((-6)/5)))

-4/2-6/5=-2-6/5=(-10-6)/5=-16/5

1+((-4)/2)((-6)/5)=1+24/5=(5+24)/5=29/5

Hence,
tan^-1(((-4)/2-(-6)/5)/(1+((-4)/2)((-6)/5)))=tan^-1((-16/5)/(29/5))=tan^-1(-16/29)

Thus,

(2i-4)/(5i-6)=sqrt(5/61)"cis(tan^-1(-16/29))