Let us write the two complex numbers in polar coordinates and let them be
z_1=r_1(cosalpha+isinalpha)z1=r1(cosα+isinα) and z_2=r_2(cosbeta+isinbeta)z2=r2(cosβ+isinβ)
Here, if two complex numbers are a_1+ib_1a1+ib1 and a_2+ib_2a2+ib2 r_1=sqrt(a_1^2+b_1^2)r1=√a21+b21, r_2=sqrt(a_2^2+b_2^2)r2=√a22+b22 and alpha=tan^(-1)(b_1/a_1)α=tan−1(b1a1), beta=tan^(-1)(b_2/a_2)β=tan−1(b2a2)
Their division leads us to
{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)}{r1r2}{cosα+isinαcosβ+isinβ} or
{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)xx(cosbeta-isinbeta)/(cosbeta-isinbeta)}{r1r2}{cosα+isinαcosβ+isinβ×cosβ−isinβcosβ−isinβ}
(r_1/r_2){(cosalphacosbeta+sinalphasinbeta)+i(sinalphacosbeta-cosalphasinbeta))/((cos^2beta+sin^2beta))(r1r2)(cosαcosβ+sinαsinβ)+i(sinαcosβ−cosαsinβ)(cos2β+sin2β) or
(r_1/r_2)*(cos(alpha-beta)+isin(alpha-beta))(r1r2)⋅(cos(α−β)+isin(α−β)) or
z_1/z_2z1z2 is given by (r_1/r_2, (alpha-beta))(r1r2,(α−β))
So for division complex number z_1z1 by z_2z2 , take new angle as (alpha-beta)(α−β) and modulus the ratio r_1/r_2r1r2 of the modulus of two numbers.
Here 2i-7=-7+2i2i−7=−7+2i can be written as r_1(cosalpha+isinalpha)r1(cosα+isinα) where r_1=sqrt((-7)^2+2^2)=sqrt53r1=√(−7)2+22=√53 and alpha=tan^(-1)(-2/7)α=tan−1(−27)
and 3i-2=-2+3i3i−2=−2+3i can be written as r_2(cosbeta+isinbeta)r2(cosβ+isinβ) where r_2=sqrt((-2)^2+3^2)=sqrt13r2=√(−2)2+32=√13 and beta=tan^(-1)(-3/2)β=tan−1(−32)
and z_1/z_2=sqrt53/sqrt13(costheta+isintheta)z1z2=√53√13(cosθ+isinθ), where theta=alpha-betaθ=α−β
Hence, tantheta=tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)=((-2/7)-(-3/2))/(1+(-2/7)xx(-3/2))=(-2/7+3/2)/(1+3/7)=(17/14)/(10/7)=17/14xx7/10=17/20tanθ=tan(α−β)=tanα−tanβ1+tanαtanβ=(−27)−(−32)1+(−27)×(−32)=−27+321+37=1714107=1714×710=1720.
Hence, (2i-7)/(3i-2)=sqrt(53/13)(costheta+isintheta)2i−73i−2=√5313(cosθ+isinθ), where theta=tan^(-1)(17/20)θ=tan−1(1720)