How do you divide ( 2i -7) / ( 3 i -2 )2i73i2 in trigonometric form?

1 Answer
Nov 3, 2016

(2i-7)/(3i-2)=sqrt(53/13)(costheta+isintheta)2i73i2=5313(cosθ+isinθ), where theta=tan^(-1)(17/20)θ=tan1(1720)

Explanation:

Let us write the two complex numbers in polar coordinates and let them be

z_1=r_1(cosalpha+isinalpha)z1=r1(cosα+isinα) and z_2=r_2(cosbeta+isinbeta)z2=r2(cosβ+isinβ)

Here, if two complex numbers are a_1+ib_1a1+ib1 and a_2+ib_2a2+ib2 r_1=sqrt(a_1^2+b_1^2)r1=a21+b21, r_2=sqrt(a_2^2+b_2^2)r2=a22+b22 and alpha=tan^(-1)(b_1/a_1)α=tan1(b1a1), beta=tan^(-1)(b_2/a_2)β=tan1(b2a2)

Their division leads us to

{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)}{r1r2}{cosα+isinαcosβ+isinβ} or

{r_1/r_2}{(cosalpha+isinalpha)/(cosbeta+isinbeta)xx(cosbeta-isinbeta)/(cosbeta-isinbeta)}{r1r2}{cosα+isinαcosβ+isinβ×cosβisinβcosβisinβ}

(r_1/r_2){(cosalphacosbeta+sinalphasinbeta)+i(sinalphacosbeta-cosalphasinbeta))/((cos^2beta+sin^2beta))(r1r2)(cosαcosβ+sinαsinβ)+i(sinαcosβcosαsinβ)(cos2β+sin2β) or

(r_1/r_2)*(cos(alpha-beta)+isin(alpha-beta))(r1r2)(cos(αβ)+isin(αβ)) or

z_1/z_2z1z2 is given by (r_1/r_2, (alpha-beta))(r1r2,(αβ))

So for division complex number z_1z1 by z_2z2 , take new angle as (alpha-beta)(αβ) and modulus the ratio r_1/r_2r1r2 of the modulus of two numbers.

Here 2i-7=-7+2i2i7=7+2i can be written as r_1(cosalpha+isinalpha)r1(cosα+isinα) where r_1=sqrt((-7)^2+2^2)=sqrt53r1=(7)2+22=53 and alpha=tan^(-1)(-2/7)α=tan1(27)

and 3i-2=-2+3i3i2=2+3i can be written as r_2(cosbeta+isinbeta)r2(cosβ+isinβ) where r_2=sqrt((-2)^2+3^2)=sqrt13r2=(2)2+32=13 and beta=tan^(-1)(-3/2)β=tan1(32)

and z_1/z_2=sqrt53/sqrt13(costheta+isintheta)z1z2=5313(cosθ+isinθ), where theta=alpha-betaθ=αβ

Hence, tantheta=tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)=((-2/7)-(-3/2))/(1+(-2/7)xx(-3/2))=(-2/7+3/2)/(1+3/7)=(17/14)/(10/7)=17/14xx7/10=17/20tanθ=tan(αβ)=tanαtanβ1+tanαtanβ=(27)(32)1+(27)×(32)=27+321+37=1714107=1714×710=1720.

Hence, (2i-7)/(3i-2)=sqrt(53/13)(costheta+isintheta)2i73i2=5313(cosθ+isinθ), where theta=tan^(-1)(17/20)θ=tan1(1720)