How do you divide (2x^2+4x-4)div(x-2)(2x2+4x4)÷(x2) using synthetic division?

1 Answer
Oct 27, 2016

The answer is (2x^2+4x-4)/(x-2)=2x+8+12/(x-2)2x2+4x4x2=2x+8+12x2

Explanation:

Let's do the long division
2x^2+4x-42x2+4x4color(white)(aaaaa)aaaaax-2x2
2x^2-4x2x24xcolor(white)(aaaaaaaaa)aaaaaaaaa2x+82x+8
color(white)(aa)aa0+8x-40+8x4
color(white)(aa)aa0+8x-160+8x16
color(white)(aaaaaa)aaaaaa0+120+12

So (2x^2+4x-4)/(x-2)=2x+8+12/(x-2)2x2+4x4x2=2x+8+12x2

The remainder can be obtained
let f(x)=2x^2+4x-4f(x)=2x2+4x4
then f(2)=2*2^2+4*2-4=12f(2)=222+424=12