How do you divide #(-2x^3-23x^2-4x+11)/(x-5) #?
1 Answer
Nov 12, 2017
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(-2x^2)(x-5)color(magenta)(-10x^2)-23x^2-4x+11#
#=color(red)(-2x^2)(x-5)color(red)(-33x)(x-5)color(magenta)(-165x)-4x+11#
#=color(red)(-2x^2)(x-5)color(red)(-33x)(x-5)color(red)(-169)(x-5)color(magenta)(-845)+11#
#=color(red)(-2x^2)(x-5)color(red)(-33x)(x-5)color(red)(-169)(x-5)-834#
#"quotient "=color(red)(-2x^2-33x-169)," remainder "=-834#
#rArr(-2x^3-23x^2-4x+11)/(x-5)#
#=-2x^3-33x-169-834/(x-5)#