How do you divide #( 2x^4 - 5x^3 - 8x^2+17x+1 )/(x^2 - 2 )#?

1 Answer
Jun 14, 2017

#(2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1 )/(x^2 - 2)= (2 x^2 - 5 x - 4) + (7 x - 7 )/(x^2-2)#

Explanation:

The first thing we should do when trying to divide two rational functions is to see if the denominator is a zero of the numerator.

Let #f(x)=2x^4-5x^3-8x^2+17x+1#

#f(sqrt2)=-7+7sqrt2#

We know that any rational function can be written as: #f(x)=p(x)q(x)+r(x)#. Thus we can say:

#2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1 =(ax^2+bx+c)(x^2-2)+7x-7#

This is because when #(x^2-2)=0#, the remainder was #(7x-7)#. So #r(x)=7x-7#. We already know #q(x)# and we need to work out #p(x)#.

#2x^4-5x^3-8x^2+10x+8=(ax^2+bx+c)(x^2-2)#

#ax^4=2x^4rArra=2#

#bx^3=-5x^3rArrb=-5#

#-2c=8rArrc=-4#

#2x^4-5x^3-8x^2+10x+8=(2x^2-5x-4)(x^2-2)#

#2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1=(2x^2-5x-4)(x^2-2) +7x-7#

#(2 x^4 - 5 x^3 - 8 x^2 + 17 x + 1 )/(x^2 - 2)= (2 x^2 - 5 x - 4) + (7 x - 7 )/(x^2-2)#