How do you divide 2x^4 - x^3y + x^2y^2 + 4xy^3 - 4y^4 div 2x^2 + xy - 2y^2?

1 Answer
Jun 27, 2016

x^2 - x y + 2 y^2

Explanation:

Calling

N(x,y) = 2 x^4 - x^3 y + x^2 y^2 + 4 x y^3 - 4 y^4
D(x,y)=2 x^2 + x y - 2 y^2

Dividing N(x,y) into D(x,y) will give a result Q(x,y) with maximum x coefficient equal 2 and maximum y coefficient equal 2.
The remainder R(x,y) will have maximum x coefficient equal 1 and maximum y coefficient equal 1. So

Q(x,y) = sum_{i=0,j=0}^{i=2,j=2}q_{ij}x^i y^j

and

R(x,y) = r_{11}x y + r_{10}x+r_{01}y+r_{00}

Expanding

N(x,y)=D(x,y)Q(x,y)+R(x,y)

and equating the coefficients we have (I am considering only nontrivial relationships)

{ ( -4 + 2 q_{02}=0), (-q_{00} - r_{11}=0),( -q_{01} + 2 q_{10}=0), (4 - q_{02} + 2 q_{11}=0), (-2 q_{01} - q_{10}=0), (1 - 2 q_{02} - q_{11} + 2 q_{20}=0), (-q_{12} + 2 q_{21}=0), (-1 - 2 q_{11} - q_{20}=0), (-2 q_{12} - q_{21}=0), (2 - 2 q_{20}=0) :}

solving we have

q_{02}=1,q_{11}=-1,q_{20}=1 and all others nulls. So the result is

(N(x,y))/(D(x,y))=x^2 - x y + 2 y^2