How do you divide ( 3i-1) / (8i -4 )3i18i4 in trigonometric form?

1 Answer
Mar 2, 2016

1/(2sqrt2)xxe^(i(alpha-beta)122×ei(αβ), where alpha=tan^-1(-3)α=tan1(3) and beta=tan^-1(-2)β=tan1(2)

Explanation:

(a+bi)(a+bi) an be written in as sqrt(a^2+b^2)e^(i(tan^-1(b/a))a2+b2ei(tan1(ba))

Hence, (3i-1)=(-1+3i)=sqrt(1^2+3^2)(e^(itan^-1(-3/1)))=sqrt10e^(itan^-1(-3))(3i1)=(1+3i)=12+32(eitan1(31))=10eitan1(3)

Similarly, (8i-4)=(-4+8i)=sqrt(4^2+8^2)(e^(itan^-1(-8/4)))=sqrt80e^(itan^-1(-2))(8i4)=(4+8i)=42+82(eitan1(84))=80eitan1(2)

Hence (3i-1)/(8i-4)=(sqrt10e^(itan^-1(-3)))/(sqrt80e^(itan^-1(-2)))3i18i4=10eitan1(3)80eitan1(2)

or sqrt(1/8)xxe^(i(tan^-1(-3))-(tan^-1(-2))18×ei(tan1(3))(tan1(2)) or

1/(2sqrt2)xxe^(i(alpha-beta)122×ei(αβ), where alpha=tan^-1(-3)α=tan1(3) and beta=tan^-1(-2)β=tan1(2)