Let us first write (3i+8)(3i+8) and (i+4)(i+4) in trigonometric form.
a+iba+ib can be written in trigonometric form re^(itheta)=rcostheta+irsintheta=r(costheta+isintheta)reiθ=rcosθ+irsinθ=r(cosθ+isinθ),
where r=sqrt(a^2+b^2)r=√a2+b2 and tantheta=b/atanθ=ba or theta=arctan(b/a)θ=arctan(ba)
Hence 3i+8=(8+3i)=sqrt(8^2+3^2)[cosalpha+isinalpha]3i+8=(8+3i)=√82+32[cosα+isinα] or
sqrt73e^(ialpha)√73eiα, where tanalpha=3/8tanα=38 and
i+4=(4+i)=sqrt(4^2+1^2)[cosbeta+isinbeta]i+4=(4+i)=√42+12[cosβ+isinβ] or
sqrt17e^(ibeta]√17eiβ, where tanbeta=1/4tanβ=14
Hence (3i+8)/(i+4)=(sqrt73e^(ialpha))/(sqrt17e^(ibeta])=sqrt(73/17)e^(i(alpha-beta))=sqrt(73/17)(cos(alpha-beta)+isin(alpha-beta))3i+8i+4=√73eiα√17eiβ=√7317ei(α−β)=√7317(cos(α−β)+isin(α−β))
Now, tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)tan(α−β)=tanα−tanβ1+tanαtanβ
= (3/8-1/4)/(1+3/8*1/4)=(1/8)/(1+3/32)=1/8*32/35=4/3538−141+38⋅14=181+332=18⋅3235=435
Hence (6i-4)/(-3i-5)=sqrt(73/17)(cosrho+isinrho)6i−4−3i−5=√7317(cosρ+isinρ) where rho=tan^(-1)(4/35)ρ=tan−1(435)