How do you divide ( 3i+8) / (i +4 )3i+8i+4 in trigonometric form?

1 Answer
May 21, 2016

(6i-4)/(-3i-5)=sqrt(73/17)(cosrho+isinrho)6i43i5=7317(cosρ+isinρ) where rho=tan^(-1)(4/35)ρ=tan1(435)

Explanation:

Let us first write (3i+8)(3i+8) and (i+4)(i+4) in trigonometric form.

a+iba+ib can be written in trigonometric form re^(itheta)=rcostheta+irsintheta=r(costheta+isintheta)reiθ=rcosθ+irsinθ=r(cosθ+isinθ),
where r=sqrt(a^2+b^2)r=a2+b2 and tantheta=b/atanθ=ba or theta=arctan(b/a)θ=arctan(ba)

Hence 3i+8=(8+3i)=sqrt(8^2+3^2)[cosalpha+isinalpha]3i+8=(8+3i)=82+32[cosα+isinα] or

sqrt73e^(ialpha)73eiα, where tanalpha=3/8tanα=38 and

i+4=(4+i)=sqrt(4^2+1^2)[cosbeta+isinbeta]i+4=(4+i)=42+12[cosβ+isinβ] or

sqrt17e^(ibeta]17eiβ, where tanbeta=1/4tanβ=14

Hence (3i+8)/(i+4)=(sqrt73e^(ialpha))/(sqrt17e^(ibeta])=sqrt(73/17)e^(i(alpha-beta))=sqrt(73/17)(cos(alpha-beta)+isin(alpha-beta))3i+8i+4=73eiα17eiβ=7317ei(αβ)=7317(cos(αβ)+isin(αβ))

Now, tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)tan(αβ)=tanαtanβ1+tanαtanβ

= (3/8-1/4)/(1+3/8*1/4)=(1/8)/(1+3/32)=1/8*32/35=4/3538141+3814=181+332=183235=435

Hence (6i-4)/(-3i-5)=sqrt(73/17)(cosrho+isinrho)6i43i5=7317(cosρ+isinρ) where rho=tan^(-1)(4/35)ρ=tan1(435)