How do you divide #( -3x^3 - 2x^2+13x+4 )/(3-x )#?

2 Answers
May 3, 2017

Using the Long Division method ->

Explanation:

First step I would do is remove the negative sign from the fraction.
#-(3x^3+2x^2-13x-4)/-(x-3)# #=(3x^3+2x^2-13x-4)/(x-3)#
Proceed with Long Division.

..........................#(+3x^2+11x+20)#
#color(white)((x-3)/color(black)(x-3)(3x^3+2x^2-x^2-7x-7)/color(black)(")"bar(3x^3+2x^2-13x-4)))#
.............#-(3x^3-9x^2)#
..................------------------------------------
.................#(0x^3+11x^2-13x)#
..........................#-(11x^2-33x)#
..................------------------------------------
..........................#(-0X^2+20x-4)#
...........................................#-(20x-60)#
.................--------------------------------------
................................................#(0x+56)#

Note: Ignore the full stops, I'm new at this :/

You may want to copy it on paper to make it clearer.

So, to simplify the fraction from the above:

#-(3x^3+2x^2-13x-4)/-(x-3)# = #3x^2+11x+20+(56/(x-3))#

May 3, 2017

This really is long division. It just looks different!

#3x^2+11x+20+56/(x-3)#

Explanation:

For convenience I have written #3-x# as #-x+3#

#" "-3x^3-2x^2+13x+4#
#color(magenta)(3x^2)(-x+3)->ul( -3x^3+9x^2) larr" Subtract"#
#" "0-11x^2+13x+4#
#color(magenta)(11x)(-x+3)->" "ul(-11x^2+33x )larr" Subtract"#
#" "0" " -20x+4#
#color(magenta)(20)(-x+3)->" "ul(-20x+60) larr" Subtract"#
#" "color(magenta)(0-56 larr "Remainder")#

#(-3x^3-2x^2+13x+4)/(3-x) = color(magenta)(3x^2+11x+20-56/(3-x))#

To match Ching's answer consider #-56/(3-x)#

Not that #3-x# is the same as #-(+x-3)#

So we have #" "-(56/(-(x-3))) ->+56/(x-3)#

Giving: #" "3x^2+11x+20+56/(x-3)#