How do you divide (-4+5i) / (-1+6i) 4+5i1+6i in trigonometric form?

1 Answer

1/37(34+19i)137(34+19i)

Explanation:

We have

\frac{-4+5i}{-1+6i}4+5i1+6i

=\frac{\sqrt{41}e^{i(\pi-\tan^{-1}(5/4))}}{\sqrt{37}e^{i(\pi-\tan^{-1}(6))}}=41ei(πtan1(54))37ei(πtan1(6))

=\sqrt{\frac{41}{37}}(e^{i(\pi-\tan^{-1}(5/4))}e^{-i(\pi-\tan^{-1}(6))})=4137(ei(πtan1(54))ei(πtan1(6)))

=\sqrt{\frac{41}{37}}(e^{i(\tan^{-1}(6)-\tan^{-1}(5/4))})=4137(ei(tan1(6)tan1(54)))

=\sqrt{\frac{41}{37}} e^{i\tan^{-1}(19/34)}=4137eitan1(1934)

=\sqrt{\frac{41}{37}}(\cos(\tan^{-1}(19/34))+i\sin(\tan^{-1}(19/34)))=4137(cos(tan1(1934))+isin(tan1(1934)))

=\sqrt{\frac{41}{37}}(34/\sqrt1517+i19/\sqrt{1517})=4137(341517+i191517)

=\sqrt{\frac{41}{37\times 1517}}(34+19i)=4137×1517(34+19i)

=1/37(34+19i)=137(34+19i)