We have
\frac{-4+5i}{-1+6i}−4+5i−1+6i
=\frac{\sqrt{41}e^{i(\pi-\tan^{-1}(5/4))}}{\sqrt{37}e^{i(\pi-\tan^{-1}(6))}}=√41ei(π−tan−1(54))√37ei(π−tan−1(6))
=\sqrt{\frac{41}{37}}(e^{i(\pi-\tan^{-1}(5/4))}e^{-i(\pi-\tan^{-1}(6))})=√4137(ei(π−tan−1(54))e−i(π−tan−1(6)))
=\sqrt{\frac{41}{37}}(e^{i(\tan^{-1}(6)-\tan^{-1}(5/4))})=√4137(ei(tan−1(6)−tan−1(54)))
=\sqrt{\frac{41}{37}} e^{i\tan^{-1}(19/34)}=√4137eitan−1(1934)
=\sqrt{\frac{41}{37}}(\cos(\tan^{-1}(19/34))+i\sin(\tan^{-1}(19/34)))=√4137(cos(tan−1(1934))+isin(tan−1(1934)))
=\sqrt{\frac{41}{37}}(34/\sqrt1517+i19/\sqrt{1517})=√4137(34√1517+i19√1517)
=\sqrt{\frac{41}{37\times 1517}}(34+19i)=√4137×1517(34+19i)
=1/37(34+19i)=137(34+19i)