How do you divide 4+5i2+i in trigonometric form?

1 Answer

4+5i2+i
in trigonometric form is
r1r2cis(θ1θ2)
where,
r1=((4)2+52)
θ1=tan1(54)
and
r2=(22+12)
θ1=tan1(12)

Explanation:

Divide 4+5i2+i
in trigonometric form
Expressing numerator and denominator as
z=rcisθ
For z1=4+5i
r1=((4)2+52)
θ1=tan1(54)
For z2=2+i
r2=(22+12)
θ1=tan1(12)
Thus,
4+5i2+i=r1cisθ1r2cisθ2
=r1r2cisθ1cisθ2
By De-Moivre's theorem,
cisθ1cisθ2=cis(θ1θ2)
Now,
4+5i2+i=r1r2cis(θ1θ2)