How do you divide ( 6i-3) / ( 7 i -4 ) in trigonometric form?

1 Answer

(3sqrt(13))/13[cos(tan^-1((-1)/18))+i*sin(tan^-1((-1)/18))] OR

(3sqrt(13))/13[cos(356.82016988014^@)+i*sin(356.82016988014^@)]" "

Explanation:

Convert to Trigonometric forms first

-3+6i=3sqrt5[cos(tan^-1((6)/(-3)))+i sin(tan^-1((6)/(-3)))]

-4+7i=sqrt65[cos(tan^-1((7)/(-4)))+i sin(tan^-1((7)/(-4)))]

Divide equals by equals

(-3+6i)/(-4+7i)=

(sqrt45/sqrt65)[cos(tan^-1((6)/(-3))-tan^-1((7)/(-4)))+i sin(tan^-1((6)/(-3))-tan^-1((7)/(-4)))]

Take note of the formula:

tan (A-B)=(Tan A-Tan B)/(1+Tan A* Tan B)

also

A-B=Tan^-1 ((Tan A-Tan B)/(1+Tan A* Tan B))

(3sqrt(13))/13[cos(tan^-1((-1)/18))+i*sin(tan^-1((-1)/18))]

(3sqrt(13))/13[cos(6.2276868019339)+i*sin(6.2276868019339)]" "radian angles

(3sqrt(13))/13[cos(356.82016988014^@)+i*sin(356.82016988014^@)]" "